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Abstract
For the q-state Potts model new order parameters projecting on a group of
spins instead of a single spin are introduced. On a Cayley tree this allows the
physical interpretation of the Potts model at noninteger values q0 of the number
of states. The model can be solved recursively. This recursion exhibits chaotic
behaviour changing qualitatively at critical values of q0. Using an additional
order parameter belonging to a group of zero extrapolated size the additional
ordering is related to a percolation problem. This percolation distinguishes
different phases and explains the critical indices of percolation class occuring
at the Peierls temperature.

PACS numbers: 05.50.+q, 64.60.-i

1. Introduction

An interesting feature of the q-state Potts model [1, 2] is the possibility of considering its
thermodynamic observables as analytic functions of the number q of spin states. Extrapolating
q to unphysical values (q = 0 [3] or q = 1/2 [4]) or taking the derivative at q = 1 [5] the
observables of other models (resistor network, or dilute spin glass or percolation, respectively)
are obtained. Since this equivalence holds only for the thermodynamic observables the
connection to the dynamics of the original Potts model is lost. Extrapolation requires explicit
expressions of the observables as functions of q. This can be achieved, if we consider the
q-state Potts model on a Cayley tree, which can be solved with a recursion formalism [6–14].
Extrapolation in q can be done in the recursion for the order parameter to obtain relations to
new models. As an example we mention the result [14] that the percolation case q = 1 is
equivalent to the logistic equation, which describes the formation of percolation clusters. To
interpret non-integer values of q we introduce a new order parameter. Instead of distinguishing
one of the q values of the spin we assume ordering for a whole group of q1 spins. A
next-neighbour interaction favouring equal spins will also favour spins in the same group.
Therefore it is not surprising that we find the same mean-field equations as in the case q1 = 1,
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however with an effective number of spins q0 = q/q1 and a redefined coupling K(K0) as a
function of the original next-neighbour coupling K0. Since q and q1 may be chosen large, this
allows the interpretation of the q-state Potts model with noninteger q0 in terms of a physical
model. Due to the redefinition of the coupling not all values of K may correspond to physical
values of the original coupling K0. However, an extrapolation in the coupling is much easier
to perform than one in the number of components. An example will be given. At q0 = 1
we encounter the logistic equation exhibiting chaotic behaviour depending on the value of K
as shown in [14]. Using the conventional order parameter chaotic behaviour requires a next-
nearest-neighbour interaction for integer q > 1 [15]. Since it can be observed for noninteger
q and an external field [16], we expect chaotic behaviour to persist for q0 > 1. One of the
aims of the present paper is to study the transition into chaos for real values of q0.

A problem on a Cayley tree occurs if the recursion allows for more than one stable solution.
On a normal lattice surface effects can be neglected and the homogeneous system can be
characterized by a free energy per site f (m) as a function of the magnetization. The fixed-point
solutions of the recursion correspond to different minima of f . The phase with the lowest value
of f will be stable; the others are thermodynamically metastable. On a Cayley tree f cannot be
obtained without further assumptions due to the presence of the border points. At a fixed point
the interior of a large Cayley tree exhibits the same magnetization for all sites. As first treated
in [8,17] for q = 2 and later on generalized for q � 1 by Peruggi [9] a free energy per site f can
be found by integration. This f describes the interior of a large Cayley tree and can be taken
as representative for the infinite Bethe lattice. At zero magnetic field one obtains [9] from the
absolute minimum of f for ferromagnetic coupling one transition from the disordered state into
a magnetized state and one transition for negative coupling into an antiferromagnetic state. The
transition obtained by the presumably exact Bethe–Peierls approximation [18] corresponds to
a spinodal point of a metastable phase. The picture of a homogeneous free energy seems not to
be very natural on a Cayley tree since most of the sites are either boundary points or lie in the
transition region. As shown in [11] and [14] the values of the surface magnetizations decide
which of the stable fixed points is adopted. In this picture the phase previously discarded
as metastable appearing at the Bethe–Peierls temperature corresponds to a physical phase.
To reconcile the recursion on a Cayley tree with the approach of a homogeneous f various
proposals have been made. The trivial solution [14] by chosing the boundary conditions such
that f holds also for the Cayley tree does not look very natural. In [13] f ought to be computed
by the difference of free energies between the tree and a slightly modified lattice, which is
justified only if the solution is homogeneous. Monroe [19] conjectured that the most stable
fixed point corresponds to the physical phase. This criterion reproduces at zero field the phase
diagram of Peruggi [9]. The merit of this criterion is that it applies locally and does not rely
on values at the border. In the present paper we adopt the picture of Aguiar et al [11] and our
previous paper [14], that any stable fixed point leads to a physical phase. Within this picture two
questions arise. The first question is how different phases can be distinguished by properties
other than their behaviour at the border. The second question is related to the end points of
the disordered phase. These are second-order phase transitions with critical indices belonging
to the percolation class [14, 20]. To explain this somewhat surprising behaviour we introduce
besides a normal ordering parameter with respect to one value of the spins a second ordering on
an additional group. By extrapolating the size of the latter to zero we shall see that this ordering
describes a bond percolation problem with a probability depending on the first-order parameter.
At the end points of the disordered phase also the percolation becomes critical, which explains
the occurrence of percolation indices. If there are different stable fixed points possible, they will
lead to different bond probabilities. Therefore the corresponding phases can be distinguished
apart from the boundary conditions by their different local percolation properties.
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The paper is organized in the following way. In section 2 we give the general formulae,
especially for the the new order parameter. The mean-field equation and possible chaotic
solutions are discussed in section 3. In section 4 we present a q-state Potts model with an
additional long-range force allowing a physical interpretation of the coupling K . Section 5 is
devoted to the appearance of percolation transitions in the q-state Potts model and section 6
contains our conclusions.

2. General formalism

We consider the q-state Potts model on a Cayley tree with coordination number z. At each
site x exists a spin σx taking q different values (i.e. σx = 1, 2, . . . , q). The spins interact with
their next neighbours along the bonds 〈x, y〉 described by the following Hamiltonian:

−βH = K0

∑
〈x,y〉

δσx,σy . (1)

K0 is proportional to the inverse temperature and the interaction strength. Negative K0 values
correspond to antiferromagnetic coupling. The partition function and Boltzmann distribution
of a single spin can be calculated recursively with the methods described in [14]. A Cayley
tree can be thought of as z branches of length n connected at a site with spin σ . Since the
Hamiltonian (1) can be written as a sum over the branches, we consider the partition function
Tn(σ ) for a branch where all spin summations inside the branch except the first are carried
out. Any ordering appears as a nontrivial σ dependence of Tn(σ ). For the description of this
ordering we decompose the spin values into P + 1 groups with size qi(i = 1, 2, . . . , P + 1).
Each group i is characterized by a projector �i with the property

�i
σ =

{
1 σ in group i

0 otherwise.
(2)

The group ordering of Tn(σ ) can be written as

Tn(σ ) =
P+1∑
i=1

uin �
i
σ . (3)

The disordered state corresponds to value of uin = un independent of i. The conventional
ordering with respect to a single value σ̄ is obtained with P = 1 and �1

σ = δσ,σ̄ . This ordering
is for the Ising case q = 2 also the most general one. For the parameters uin one can find a
coupled system of recursion relations in the following way. Each branch Tn(σ ) can be related
according to figure 1 to z − 1 branches of length n − 1 by

Tn(σ ) =
∑
σ ′

exp (K0δσ,σ ′)
(
Tn−1(σ

′)
)z−1

. (4)

Parametrizing Tn(σ ) as in equation (3) the products in (4) can be evaluated using the relation

�i
σ�

j
σ = δij�

i
σ . (5)

Comparing coefficients on the two sides we find

ui,n = (eK0 − 1)(ui,n−1)
z−1 +

∑
j

qj (uj,n−1)
z−1. (6)

Spin expectation values can depend only on the ratios of ui,n. For these we obtain the recursion

ui,n

u1,n
= 1 +

(eK0 − 1)((ui,n−1/u1,n−1)
z−1 − 1)

eK0 − 1 +
∑

j qj (uj,n−1/u1,n−1)z−1
. (7)
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Figure 1. Recursion for z = 4.

The Boltzmann weight for the central spin at a fixed point ui/u1 is given by

w(σ) = N (T (σ))z (8)

where the normalization constant follows from
∑

w(σ) = 1. With the distribution (8) we
obtain for 〈�i〉

〈�i〉 = qi(ui/u1)
z

q1 +
∑

j>1 qj (uj/u1)z
. (9)

The spin expectation values 〈�i〉 lead to the magnetizations of a site. For these we use the
linear combinations

mi = 1

q − qi
〈q�i − qi〉 (10)

mi = 1 − q

qi
〈�i〉. (11)

The coefficients have been chosen such that mi = mi = 0 holds for a disordered state
〈�i〉 = qi/q and mi = 1 (mi = 1) for the ordered case where all (none) of the spin values σ
belong to group i. Among these 2(P + 2) magnetizations only P are linearly independent.

We are mainly interested in the properties of only one ordering (P = 1) with respect to a
group of size q = q1. As order parameter we use xn = 1 − u2n/u1n. Equation (7) reduces to
a recursion formula for x

xn+1 = p(xn)(1 − (1 − xn)
z−1) (12)

with

p(x) = (eK0 − 1)/(eK0 − 1 + q1 + (q − q1)(1 − x)z−1). (13)

For P = 2 we treat only the case where the recursion system decouples. This happens for the
extrapolation q3 → 0. In addition to the recursion (12) we obtain a quadratic recursion for
yn = 1 − u3n/u1n

yn+1 = p(xn)(1 − (1 − yn)
z−1). (14)

For fixed points xn = x the logistic equation (14) describes a bond percolation problem with
probability p(x) [14]. We use as independent magnetizations m1 and m3 given by

m1 = q1
(
1 − (1 − x)z

)
/N (15)

and

m3 = 1 − q(1 − y)z/N (16)
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with the normalization factor N = q1 + (q−q1)(1−x)z. Even the order parameter y no longer
appears in T (since �3

σ → 0 for q3 → 0); the extrapolated value of m3 remains finite and can
be related to the percolation ordering parameter mP defined by

mP = 1 − (1 − y)z (17)

through the relation

m3 = mP − (q/q1 − 1)m1(1 − mP). (18)

Equation (12) will be discussed in detail in the next section. The relation of percolation to the
phase transitions of the q-state Potts model given by (14) will be treated in section 5.

3. Potts model at noninteger values of q

One of the interesting properties of (12) is the observation that it depends only on two
combinations of the three parameters K0, q and q1. If we redefine the inverse temperature
K by

eK − 1 = 1

q1
(eK0 − 1) (19)

and introduce an effective number of spin states

q0 = q/q1 (20)

equation (12) can be written as a mapping

xn+1 = f (xn) (21)

with

f (x) = (eK − 1)(1 − (1 − x)z−1)

eK + (q0 − 1)(1 − x)z−1
. (22)

The recursion (21) is identical to a problem with a standard ordering parameter q1 = 1 at
temperature K with the difference that the number of states q0 can approximate any real
number q0 � 1 for sufficiently large q1 � q. Therefore the extrapolation of the q-state Potts
model to noninteger values of q0 is equivalent to group ordering. In the range eK − 1 � q0/z

the only stable orbits of the recursion (21) are fixed points. These correspond to various phases
to be discussed in section 5. In the remainder of this section we discuss (21) for real negative
K and odd z. For simplicity we take z = 3. For q0 = 1 the mapping (21) corresponds to
the logistic equation, which exhibits deterministic chaos for the control parameter eK for the
range 1/2 � eK � 2/3. For small deviations of q0 from 1 we expect the mapping (21) to have
a similar behaviour. In figure 2 we show the iterates of (21) for large n as a function of K
at q0 = 1.08. This bifurcation diagram is similar to that of the logistic equation [21]. In the
chaotic regions any xn is possible within the bounds

f (1 − e−K) � (1 − x) � e−K. (23)

However, there exists a characteristic difference to the logistic equation. For the latter all
iterates tend to ∞ for e−K � 2, whereas for (21) the chaotic regime ends. This can be
explained by the existence of a pair of fixed points of (21):

x± = 1 +
1

2(q0 − 1)

(
1 − eK ±

√
(1 − eK)2 − 4(q0 − 1)

)
(24)

possible in the range

|eK − 1| � 2
√
q0 − 1. (25)
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Figure 2. Iterates of the recursion (21) as a function of K at q0 = 1.08. The curves give the fixed
points from equation (24).

x+ is stable (solid curve in figure 2) and x− (broken curve) is unstable for K � 0. The basin
of attraction of x+ is given by initial values x0 � x−. Therefore the chaotic regime ends where
the lower bound in (23) is equal to x− from (24). Solving this equation for K we find the
endpoint KE of the chaotic regime

eKE = 1
4

(
1 +

√
9 − 8q0

)
. (26)

If we increase q beyond 10/9 the endpoint of the chaotic regime is determined by equality
in (25). At the same time the pattern of the chaotic behaviour changes qualitatively. An
example for q0 = 1.2 is shown in figure 3. The regions of chaos are intercepted by stable
orbits with increasing periods of τ = 2, 3, . . . . If we enlarge the region in between the stable
orbits they are similar to the pattern seen in figure 2. The stable orbits exhibit an accumulation
point at the end of the chaotic region given by the equality in (25). The period τ of the orbit as
a function of K may be estimated (for sufficiently large τ ) by replacing the recursion formula
by a differential equation:

dx

dn
≈ xn+1 − xn = f (x) − x. (27)

The solutions x(n) of (27) can be found by an elementary integration. They are periodic with
a period

τ = 2π(1 − eK)(2 − q0)

(1 − eK + q0) +
√

4(q0 − 1) − (eK − 1)2
. (28)

In figure 4 we compare this τ(K) with the integer length of the orbits in figure 3. As
corresponding K value we take the first bifurcation in each interval. As one sees from
figure 4, the agreement between the observed periods and the estimate (28) is excellent, even
at small τ . For values of q0 larger than 5/4 the fixed points (24) no longer exist. The periods
as seen in figures 5 (q0 = 1.255) and 6 (q0 = 1.275) remain finite. This is confirmed by the
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Figure 3. Iterates of the recursion (21) as a function of K at q0 = 1.20. Chaotic regions are
intercepted by stable orbits with increasing periods. The accumulation point of these orbits is
given by equation (25).

Table 1. Characteristics of chaotic behaviour in different intervals of q0. The value of qc, above
which no orbit of infinite length occurs, is given numerically by qc = 1.53.

End point exp(K) of Repetition of Maximum
q range chaotic behaviour deterministic chaos orbit length

1 � q0 � 10/9 1
4

(
1 +

√
9 − 8q0

)
1 ∞

10/9 < q0 � 5/4 1 − 2
√
q0 − 1 ∞ ∞

5/4 < q0 < qc 0 2π(2 − q0)/(q0 + 1)
√

4q0 − 5 ∞
q0 > qc — 0 finite
1.56 < q0 < 3 — 0 2

agreement with (28) in figure 4. The last chaotic region extends to K → −∞ and the number
of regions of stable orbits decreases with increasing q0. For q0 > qc with qc ≈ 1.53 there
will be no transition into chaos. For 1.56 � q0 � 3 only a τ = 2 orbit exists. For q0 � 3
and negative coupling K we have only the disordered fixed point x = 0. Examples of the
behaviour seen in figures 2 and 6 without detailed discussion have been given in [16].

We see that both the recursion (21) for general q0 and the logistic equation for q0 = 1
have a control parameter K which decides on the details of the chaotic behaviour. In addition
the parameter q0 = q/q1 decides which type of chaotic behaviour occurs. The various types
we found are summarized in table 1.

4. A generalized Potts model

As shown in the previous section a Potts model extrapolated to noninteger values q0 is
equivalent to aq-state Potts model at a rescaled temperature using an order parameter describing
simultaneous ordering of a group of q1 spins. The restriction to physical values of K0 imposes
by (19) a lower limit of K , which excludes the chaotic behaviour discussed in section 3.
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Figure 4. The continuum period (28) as a function of K for various values of q0. The data points
are estimates from figures 3, 5 and 6 using as K value the locus of the first period doubling. The
dashed curve gives the critical curve for q0 = 5/4.

Figure 5. Iterates of the recursion (21) as a function of K at q0 = 1.255. Different chaotic regimes
are intercepted by a finite number of stable orbits.

Therefore an extrapolation is still required. To find a model where K has a physical meaning,
we introduce the number E of occupied links in each spin configuration:

E =
∑
〈x,y〉

δσx,σy . (29)
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Figure 6. Iterates of the recursion (21) as a function of K at q0 = 1.275. Different chaotic regimes
are intercepted by a finite number of stable orbits.

A new model may be defined by allowing only spin configurations where E is even or odd.
This corresponds to a nonlocal spin interaction. The partitioned sum for even E then will
involve branch contributions with both even and odd E. It is convenient to define partitioned
sums T e

n (σ ) or T o
n (σ ) for branches allowing only even or odd values for E in the branch. As

in the previous case we express T e,o
n (σ ) by contributions of the subbranches T

e,o
n−1(σ ). This

system decouples, if we consider the sum and difference of even and odd branches given by

T (±)
n (σ ) = T e

n (σ ) ± T o
n (σ ). (30)

If we parametrize T (±)
n in the form (3)

T (±)
n (σ ) =

P+1∑
i

u
(±)
i,n �

i
σ (31)

T (+)
n corresponds to the unrestricted case given by (3) and (6). Using only one order parameter

(P = 1) and introducing the ratio

x(−)
n = u

(−)
2,n

u
(−)
1,n

− 1 (32)

we obtain the recursion formula

x
(−)
n+1 = (1 + eK0)((1 − x(−)

n )z−1 − 1)

q1 − 1 − eK0 + (q − q1)(1 − x
(−)
n )z−1

. (33)

Redefining the temperature by

eK0 + 1 = q1(1 − eK) (34)

we obtain with q0 = q/q1 the same recursion formula as (21) without restriction on K . The
chaotic region of (21) can be reached for large q1 and fixed value for K0. In this range the
according recursion to x(+)n leads always to the trivial stable fixed point x(+) = 0.
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5. Phases of the Potts model

The stable fixed points of recursion (12) give in our interpretation the possible phases with
respect to the group ordering parameter x. We do not perform the replacements (19) and (20),
but describe the model in terms of the original parameters K0, q and q1. There exist three
critical points Kc,K

′
c and K ′′

c . The disordered fixed point x = 0 is stable at high temperatures
in the range K ′

c < K0 < Kc with K ′
c = ln(1 − q/z) and Kc = ln(1 + q/(z − 2)). As the

temperature is lowered two new fixed points given by (24) appear for K0 > K ′′
c . Only x+

with positive magnetization m1 corresponds to a stable fixed point. For z = 3 the value of
x+ is given by equation (24). In contrast to K0 and K ′

0 the value of K ′′
c depends on q1. For

z = 3 one finds K ′′
c = ln(1 + 2

√
q1(q − q1)). Therefore there exists a series of critical points

depending on q1. For K0 > Kc the disordered phase changes into the fixed point x− (for z = 3
given by equation (24)) with negative magnetization m1, and for K0 < K ′

c we encounter an
antiferromagnetic coupling. This transition corresponds to the first bifurcation discussed in
section 3. If more than one stable fixed point exists, the value at the boundary decides the
adopted phase. The transition at K ′′

c is of first order. For the following it does not matter
whether this transition appears at K ′′

c or a higher value as advocated in [9] from equality of the
free energies. It is only important that the transitions at Kc and K ′

c are genuine transitions and
do not correspond to spinodal points. For the critical indices at Kc we find values belonging
to the percolation class (β = γ = 1). The same is true for the average magnetization also at
K ′

c. The staggered magnetization equal to the difference of magnetizations at adjacent sites
exhibits at K ′

c indices of the mean-field class (2β = γ = 1). The Ising case q1 = q/2
is exceptional. Since the amplitude of the average magnetization vanishes due to the Ising
symmetry on an AB lattice (m(x+) + m(x−) = 0) the percolation transitions dissappear, and
one observes mean-field indices at both critical points K ′

c and K ′′
c = Kc. Note that a Ising-type

behaviour occurs not only for q = 2q1 = 2 but also for any even q with the choice q1 = q/2.
This reflects the fact that the recursion (12) can be written in the form (21), which depends
only on the ratio q0 = q/q1.

The appearance of percolation indices for q1 
= q/2 is somewhat surprising. To understand
the mechanism we consider the recursion (12) for the order parameter x together with an
extrapolated second-order parameter yn given by (14). The recursion for the latter reads at a
fixed point for x as

yn+1 = p(x)(1 − (1 − yn)
z−1) (35)

with p(x) given by (13). As shown in [14], the recursion (35) is equivalent to bond percolation
with a probability |p(x)|. A nonzero fixed-point value y leads to a finite probability mP for a
site belonging to the infinite cluster

mP = 1 − (1 − y)z. (36)

The mapping (35) has the fixed points y = 0 and x. The stable fixed point must satisfy

|p(x)(z − 1)(1 − y)z−2| < 1. (37)

Both the disordered fixed point x = 0 in the range K ′
c < K0 < Kc and x− with negative

magnetization forK0 > Kc lead to the nonpercolating state y = 0. In contrast the fixed point x+

requires y = x+. Therefore the two phases possible for K0 > K ′′
c can be distinguished locally

by their percolating properties. The phase with m1 > 0 exhibits an infinite percolation cluster,
whereas the phase with m1 � 0 is in the disordered percolation state. Using the criterion of
existence of an infinite cluster the phase on the Cayley tree is uniquely defined and can be carried
over to the infinite Bethe lattice, since one no longer needs the values at the boundary. For
K0 < K ′

c the recursion (12) exhibits a τ = 2 orbit corresponding to antiferromagnetic ordering.
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By a straightforward calculation one can show that the recursion (14) has a stable fixed point
y = 0, although p alternates between p(x±) in subsequent iterations.

If K0 approaches the end points Kc or K ′
c of the disordered phase, |p(x)| approaches the

critical value 1/(z − 1). At these points all moments of the cluster size distribution diverge.
These moments can be represented by derivatives of the magnetization mP with respect to an
external field. Therefore magnetization and susceptibility will be singular with critical indices
belonging to the percolation class. Since the various magnetizations are not independent due
to relation (18), these divergences will also show up in magnetizations other than mP.

6. Conclusions

We introduced a new type of ordering in the q-state Potts model where a spin belongs to
one or more groups of values instead of the conventional ordering with respect to one value.
The recursion formalism for the latter can be also applied for the new ordering. For only
one group of size q1 the recursions can be cast into the same form as for q1 = 1 with the
exception that the effective number of states is given by q0 = q/q1, which can approximate
any real number larger than unity. This allows an extrapolation of the q-state Potts model to
noninteger values of q without losing the physical interpretation. For q0 close to unity the
recursion exhibits deterministic chaos similar to the logistic equation. The control parameter
is essentially the temperature K−1. Increasing q0 we observe as a function of K repetitions of
deterministic chaos separated by stable orbits of length τ = 2, 3, 4, . . . . The number of orbits
and their length can be estimated by a continuous length approximation. Most of this chaotic
behaviour occurs at K(K0) values which cannot be reached with real values of K0. To avoid
this extrapolation to unphysical values of the temperature one can introduce a generalized Potts
model, where possible spin configurations are restricted by the condition that the number of
links connecting sites with equal spin values must be even or odd. In [10] the Potts model
has been extrapolated to real values of q using the analytic expression for the free energy. For
q < 2 negative values for the specific heat have been found. This unphysical behaviour can
be avoided if one uses the new order parameter referring to a group of q1 spins and interprets
the ratio q0 = q/q1 as the effective number of spins.

The phase structure of the q-state Potts model with ordering with respect to one group
of size q1 is qualitatively similar to the conventional q1 = 1 case. Only for even q does the
Ising case q1 = q/2 behave differently. For q1 
= q/2 the transitions at the endpoints of
the disordered phase are of second order with percolation class critical indices. To understand
their occurrence we added a second group of ordering with size extrapolated to zero. This does
not change the recursions for the first group. In addition one obtains a logistic equation for
the second order parameter, which leads to indices of the percolation class. Since the control
parameter in the logistic equation depends on the phase, different phases can be distinguished
by their percolation property. The phases with positive magnetization exhibit an infinite cluster
with finite probability, whereas negative or zero magnetizations �0 have zero probability. This
criterion allows a local distinction between two possible phases. Since one does not have to
resort to boundary conditions, this criterion can also be applied on the infinite Bethe lattice.
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